EMOS B9659 handleiding
Handleiding
Je bekijkt pagina 3 van 40

3
Some sections of article c) describe situations that are irrele-
vant to users of automatic chargers. These chapters are marked
with an asterisk
*
.
• Accumulator type – we will be describing the charging of
AGM or GEL maintenance-free accumulators.
• Correct voltage – make sure your charger is set to the
correct rated charging voltage. Charging voltage must be
14.4 V for 12 V batteries and 7.2 V for 6 V batteries. Some
chargers do not have a switch. In that case, simply check
whether the data on both components matches (e.g. 12 V
charger and 12 V batteries).
• Correct polarity – before starting the charger, check that
the poles on the battery and the terminals on the charger
cables match, i.e. connect the negative terminal to the
negative pole and positive terminal to the positive pole.
Otherwise you risk a short circuit.
• Ventilation – check that the ventilation (valve vents on the
battery lid on top or on the side) is clean and unobstructed
and that gases can freely release from the battery if nee-
ded. If the vents are clogged or covered, there is a risk of
accumulation of gases inside the battery, causing potential
irreversible damage. Some batteries do not feature vents
or the vents are hidden.
• Setting an automatic charger – if the charger features
multiple setting options, follow the instructions provided
by the manufacturer of the charger. Usually the charger
allows setting charging voltage and current. You will nd
instructions on the required charging current in the next
paragraph. If the charger has no settings, start it up by
plugging the power cable into a 220 V (230 V) mains socket;
the cables with terminals should already be connected to
the battery poles at this point.
• Charging current
*
– general rule of thumb: charge with
current equal to one tenth (1/10) of battery capacity. Expre-
ssed numerically, if you have a 60 Ah accumulator, charge
it at 6 A (60 : 10 = 6 A). There is a more accurate charging
formula that states that the charging current should equal
0.12 times the accumulator capacity. I.e. I = 0.12 × C. In
practice, if you have a 60 Ah accumulator, then 60 × 0.12
= 7.2 A charging current.
These days, most users have automatic chargers. In that
case, simply choose a suitable charger with sucient
current. Take into account, however, that charge time is
directly proportional to charging current. Charging should
not take unnecessarily long (1 A charging current is too
little for a 60 Ah battery, for instance). Vice versa, do not
choose a charger that is too powerful, so that charging
isn‘t unnecessarily fast. Such charging is harmful to the
accumulator in the long term (e.g. charging current over
14 A is too high for a 60 Ah battery).
Note: if your charger allows adjusting the charging current,
charge according to formula I = 0.12 × C up until you reach
voltage of 14.2 V; then, reduce the current to half and con-
tinue until charging is complete (voltage will reach 14.4 V).
• Signs of full charging
*
– in general, a battery should
be recharged to full charge. Maintenance-free batteries
without caps or AGM batteries with absorbed electrolyte
no longer allow measuring energy density; do not under
any circumstances attempt to break into the battery! The
state of charge of a 12 V maintenance-free AGM or GEL
type lead-acid battery, charged in a standard way with a
manual charger, can be estimated by measuring voltage
on the poles during charging. The values can be interpreted
as follows: 14.3 V = 90 to 95 % charge, 14.4 to 14.5 V =
100 % charge.
WARNING – make sure to correctly set the measured
quantity on the measuring device to voltage [V].
• Quick charging* – In exceptional cases where quick charging
is necessary, it is possible to use a charging current of I = 1 ×
C (in our example of a 60 Ah battery, charging current would
be 60 A). However, only charge this way for a maximum
of 30 minutes! Keep in mind that the more frequently you
use higher charging currents to recharge your battery, the
shorter you can expect the service life of the battery to be.
• Accumulator capacity – the current capacity (state of
charge) of the accumulator can be determined using simple
measuring devices. You can use both devices for approxima-
te measurement without putting a load on the accumulator
and more precise devices that measure internal resistance.
However, precisely determining the service life of the
accumulator requires a complex diagnostic process using
an expensive testing device that discharges and recharges
the accumulator. Such diagnostic can take several hours
for smaller batteries and several days for larger batteries.
It is recommended to do any testing to determine battery
capacity only with a fully charged accumulator and with at
least 4 hour gap since last charging. Approximate measu-
rement of capacity can be done using a simple measuring
device called a voltmeter. Measure without load, i.e. only
measure voltage without current drain. Compare the mea-
sured values with the following table (note: the results of
measurement may be misrepresentative or completely
incorrect for damaged batteries or older batteries that have
been used for a long time; such batteries can be identied
and tested only using more complex methods):
State of charge Measured voltage
100 % 12.90+ V
75 % 12.60 V
50 % 12.40 V
25 % 12.10 V
0 % 11.90 V
• Deep discharge – if you discharge the accumulator com-
pletely and leave it in this state for several days, you will
reach a state of so-called deep discharge; measured volt-
age at zero load will drop under 11 V and a process called
sulphation will begin inside the cells. The sulphur originally
contained in the electrolyte will „seep“ into the active
material of the lead plates due to discharging. Recharging
would once again „dislodge“ and mix the sulphur with the
diluted, watery electrolyte, increasing the concentration of
the acid. But when not recharged, the sulphur reacts with
the lead, resulting in further oxidation and the active lead
material turns into lead sulphide, also known as sulphate.
In advanced stages, the process is irreversible and the
accumulator is permanently damaged. If the accumulator
reaches a state of deep discharge, it is often no longer
rechargeable using a standard automatic charger. These
chargers are usually either unable to detect the voltage in
the discharged battery and will not start charging at all, or
they start charging but are unable to overcome the internal
resistance of the sulphated accumulator and overheat.
To try to restore the accumulator, bring it to a professional
service centre. Deeply discharged accumulators that have
become damaged in this way are not covered by the wa-
rranty.
Bekijk gratis de handleiding van EMOS B9659, stel vragen en lees de antwoorden op veelvoorkomende problemen, of gebruik onze assistent om sneller informatie in de handleiding te vinden of uitleg te krijgen over specifieke functies.
Productinformatie
Merk | EMOS |
Model | B9659 |
Categorie | Niet gecategoriseerd |
Taal | Nederlands |
Grootte | 3210 MB |